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Abstract
Background and Objective: While the development of artificial intelligence 
(AI) technologies in medicine has been significant, their application to acute and 
chronic pain management has not been well characterized. This systematic re-
view aims to provide an overview of the current state of AI in acute and chronic 
pain management.
Databases and Data Treatment: This review was registered with PROSPERO 
(ID# CRD42022307017), the international registry for systematic reviews. The 
search strategy was prepared by a librarian and run in four electronic databases 
(Embase, Medline, Central, and Web of Science). Collected articles were screened 
by two reviewers. Included studies described the use of AI for acute and chronic 
pain management.
Results: From the 17,601 records identified in the initial search, 197 were in-
cluded in this review. Identified applications of AI were described for treatment 
planning as well as treatment delivery. Described uses include prediction of pain, 
forecasting of individualized responses to treatment, treatment regimen tailor-
ing, image- guidance for procedural interventions and self- management tools. 
Multiple domains of AI were used including machine learning, computer vision, 
fuzzy logic, natural language processing and expert systems.
Conclusion: There is growing literature regarding applications of AI for pain 
management, and their clinical use holds potential for improving patient out-
comes. However, multiple barriers to their clinical integration remain including 
lack validation of such applications in diverse patient populations, missing infra-
structure to support these tools and limited provider understanding of AI.
Significance: This review characterizes current applications of AI for pain man-
agement and discusses barriers to their clinical integration. Our findings support 
continuing efforts directed towards establishing comprehensive systems that in-
tegrate AI throughout the patient care continuum.
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1  |  INTRODUCTION

The International Association for the Study of Pain 
defines pain as ‘an unpleasant sensory and emotional 
experience associated with, or resembling that asso-
ciated with, actual or potential tissue damage’ (Raja 
et  al.,  2020, 2017). The perception of pain can have 
diverse and profound impacts on individuals, with 
life- changing negative impacts on quality of living 
(Duenas et al., 2016; Froud et al., 2014; Michaelides & 
Zis, 2019). However, the interpretation of such experi-
ence is influenced to varying degrees by physiological, 
psychological, and social factors as described by the 
widely adopted biopsychosocial model of pain (Meints 
& Edwards, 2018). Unrelieved pain in the acute setting 
has consequences beyond the immediate experience, in-
cluding reduced quality of life, impaired sleep and phys-
ical function, and increased risk of developing chronic 
pain (Sinatra, 2010). On the other hand, chronic pain is 
often described as a disease in its own right; affecting 
not only patients, but their families and friends as well 
(Vega et al., 2018). The true prevalence of pain is diffi-
cult to characterize largely due to the subjective nature 
of symptoms and a lack of consensus regarding specific 
diagnoses and definitions of conditions. However, it is 
estimated that pain affects billions of people globally on 
a daily basis (Zimmer et al., 2022). The annual cost of 
diagnosing and managing pain in the United States is 
greater than the annual costs of heart disease ($309 bil-
lion), cancer ($243 billion), and diabetes ($188 billion) 
(Henschke et al., 2015).

Promising areas of research regarding the effective 
management of patients experiencing acute and chronic 
pain are significant, including the study of predictive 
modelling and precision medicine approaches (Cohen 
et  al.,  2021). The use of large data collections for pre-
dictive modelling and precision medicine has recently 
been emphasized in the literature, including the use 
of computational models to process and mine data col-
lections, develop diagnostic and prognostic models, 
and predict response to potential treatments (König 
et  al.,  2017). For instance Niculescu et  al. successfully 
identified objective blood biomarkers for pain using ge-
netic expression data to allow improved diagnostics and 
targeted therapeutics (Niculescu et al., 2019). Similarly 
Lee et al. used magnetic resonance imaging to identify 
neural signatures associated with pain to classify treat-
ment responders and identify therapeutic targets (Lee, 
Wei, et al., 2021). A recent review by Edwards et al. de-
scribes precision medicine approaches for conducting 
clinical trials on chronic pain using clinical patient data 
(Edwards et  al.,  2023). All of these approaches aim to 
use collected data to develop clinically relevant models, 

with the objective of applying these analyses to then 
inform further assessment and treatment of patients 
(Subramanian et al., 2020).

Artificial intelligence (AI) is broadly described as the 
use of algorithms to give machines the ability to rea-
son and perform functions such as problem- solving, 
object and word recognition, inference of world states, 
and decision- making (Bellman,  1978). This is achieved 
through the use of multiple distinct technologies, all of 
which can be considered branches of AI. These technol-
ogies include machine learning, computer vision, natural 
language processing (NLP), expert systems and fuzzy logic 
(Chen & Decary, 2020). Table 1 provides a basic overview 
of these techniques, and an informative in- depth discus-
sion can be found in a recent review published by Chen 
et  al. (Chen & Decary,  2020). Another recent review by 
Hagedorn et al. describes multiple novel applications of 
AI within pain medicine such as clinical trial optimization 
using machine learning, streamlining physician workflow 
and doctor- patient communication using NLP, and ana-
lysing patient outcomes using deep learning (Hagedorn 
et al., 2024). However, the use of AI also has the potential 
to revolutionize our precision- medicine approach to man-
aging patients with acute and chronic pain.

As such, this systematic review aims to: (1) Characterize 
current applications of AI for acute and chronic pain man-
agement; (2) discuss current barriers to the implementa-
tion of such technologies.

2  |  METHODS

The Preferred Reporting Items for Systematic Reviews and 
Meta- Analyses (PRISMA) guidelines for systematic re-
views was followed for this review (Page et al., 2021). This 
systematic review has been registered with PROSPERO 
(ID # CRD42022307017), the international registry for 
systematic reviews (Schiavo, 2019).

2.1 | Identifying relevant studies

A senior medical librarian searched the following data-
bases from inception until October 2023: Embase (Ovid), 
Medline (Ovid), Central (Cochrane Library), and Web 
of Science (SCI- EXPANDED, CPCI- S, ESCI). The search 
strategy used variations in text words found in the title, 
abstract or keyword fields, and relevant subject headings 
to retrieve articles looking at the use of AI for the man-
agement of acute and chronic pain. Various forms of the 
central terms ‘AI’, ‘pain’ and ‘analgesia’ were used to iden-
tify relevant articles. The search strategy had no language 
restriction. See Data S1 for the full search strategy.
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T A B L E  1  Overview of commonly applied artificial intelligence technologies.

Machine learning Machine learning refers to the use of mathematical algorithms to identify patterns in very large datasets 
(Hashimoto et al., 2020; Rowe, 2019). Different learning methods can be employed to perform distinctive tasks 
including supervised learning, unsupervised learning and reinforcement learning.

Supervised learning Supervised learning draws knowledge from previously curated training datasets to make further predictions from 
future datasets (Gareth James, 2013; Hastie et al., 2009). To describe this using an analogy, a supervised learning 
algorithm can be thought of as a student whereas a collection of labelled data can be thought of as a teacher. The 
labelled data (teacher) provides the supervised learning algorithm (student) with examples of correct answers 
(output labels) along with corresponding input data (i.e. a math problem with the associated correct solutions). 
The supervised learning algorithm can then ‘learn’ from this associated data to infer the solutions to different (yet 
similar) problems in the future.

Unsupervised 
learning

Unsupervised learning aims to categorize individual instances in a dataset into distinct categories determined 
by the algorithm, without being informed by a previously created training dataset (Gareth James, 2013; Hastie 
et al., 2009). This is in contrast to supervised learning as no associated input–output data is provided to the 
algorithm. Rather, the unsupervised algorithm aims to discover patterns or groups occurring within a collection 
of data without being provided with associated output labels.

Reinforcement 
learning

Reinforcement learning is the technique of training an algorithm for a specific task where no single answer is 
correct, but an overall outcome is desired. More specifically, reinforcement learning algorithms are able to use 
‘trial and error’ and incorporate feedback from its own actions and experiences to maximize the total cumulative 
reward desired (Choi, Baker, et al., 2020). To describe this using an analogy, we can think of teaching a dog to 
catch a ball. Rather than teaching this dog how to explicitly catch a ball, we can throw the ball towards the dog 
and give the dog a treat every time the ball is caught. If the dog fails to catch the ball, then we do not give the dog 
a treat. By repeating this exercise multiple times, the dog will eventually learn which actions lead to it receiving 
a treat. Thus, the dog will learn how to catch a ball by maximizing the number of treats it receives (i.e. will 
maximize reward via ‘trial and error’) to achieve the overall outcome desired.

Computer vision Computer vision describes a computing system's ability to interpret the visual world in numerical or symbolic 
form from images, video and other visual data (Hashimoto et al., 2020).

Natural language 
processing

Natural language processing uses computational techniques to learn, understand, and produce human language 
content (Hirschberg & Manning, 2015). Natural language processing does not simply imply the recognition of 
letters and words but entails a deeper understanding of syntax and semantics to extract meaning from language.

Expert systems Expert systems are a branch of AI that draw from a knowledge base and a set of rules for applying this knowledge 
base to situations fed to the system (Klar & Zaiss, 1990). This is used to make logical predictions about events taking 
place in the future or reach a logical conclusion about why an event occurred in the past (Klar & Zaiss, 1990).

Fuzzy logic Fuzzy logic can be incorporated within frameworks to facilitate AI- based functions (Hashimoto et al., 2020). 
Unlike binary logic, where concepts of ‘true’ and ‘false’ are relied upon to reach conclusions, fuzzy logic allows 
for the inclusion of partial truth or degrees of truth. This permits fuzzy logic systems to handle ambiguous 
information (Hashimoto et al., 2020).

Boosting: extreme 
gradient boosting; 
tradient boosting

Subset of machine learning that manipulates training data by generating a large number of pseudo datasets by 
resampling the original observations with replacement to reduce variance, resulting in an ensemble of decision 
trees which are averaged to make the best overall prediction (Klug et al., 2020).

Decision trees Subset of machine learning that classifies data items by posing a series of questions about features associated with 
the items to split the dataset into distinct classes. Each split has an edge that connects either to a new decision 
node that contains another feature to further split the data into homogenous groups or to a terminal node (Choi, 
Baker, et al., 2020).

Expert system System containing a knowledge base and inference/rules engine—A set of rules for applying the knowledge base 
to situations provided to the program. This is used to make a logical prediction about events taking place in the 
future or reach a logical conclusion about why an event occurred in the past (Holman & Cookson, 1987).

Bayes classifier Probabilistic classification method based on Bayes' theorem with the assumption of independence between 
features using training datasets to make predictions (Matsangidou et al., 2021).

K- Means classifier Subset of machine learning that divides a number of data points into a number of clusters based on the nearest 
mean (Matsangidou et al., 2021).

K- Nearest 
neighbours

Subset of machine learning that uses the proximity of the data in dataspace to make classifications or predictions 
about the grouping of an individual data point (Goin, 1984).

Neural networks Network of nodes that communicate with other nodes via connections that are weighted based upon their ability 
to provide a desired outcome Choi, Baker, et al., 2020.

(Continues)
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2.2 | Study selection

All titles and abstracts obtained in the literature search 
were manually and independently screened by two au-
thors using Rayyan, an online screening tool (Ouzzani 
et  al.,  2016). Identified relevant articles then underwent 
full- text screening independently by two authors, with 
disagreements resolved through discussion. Articles in-
cluded in the final review described applications of AI that 
focused on the management of acute and chronic pain in 
the adult (>18 years old) population. Given significant 
heterogeneity in participant age reporting practices in the 
collected literature, we opted to include all studies with a 
reported mean participant age greater than 18 years old. 
Articles describing the use of AI solely for the real- time 
identification or assessment of pain intensity without 
further management guidance were excluded and have 
been extensively reviewed elsewhere (Cascella, Scarpati, 
et al., 2023). Similarly, as this review intended to focus on 
the use of AI as it pertains to the treatment of pain, appli-
cations meant to diagnose underlying causes of pain were 
excluded, and have also been broadly summarized else-
where (D'Antoni et al., 2022). Articles written in languages 
other than English and French without available transla-
tion, as well as articles in the form of review articles, con-
ference abstracts, editorials and commentaries were also 
excluded. There was no further limitation on study design. 
A Preferred Reporting Items for Systematic Reviews and 
Meta- Analysis (PRISMA) diagram was used to record the 
screening decisions (Figure 1) (Page et al., 2021).

2.3 | Data extraction

Following the selection of studies, data from each ar-
ticle was extracted and organized into 17 categories 

in a standardized data extraction form developed in 
Microsoft Excel. This was done independently by two 
authors (RA, SW) to record the information and syn-
thesize it in summary format. Extracted information in-
cluded author name(s), year of publication, title, location 
of study, study design, overall study aim, targeted study 
population, number of included participants, descrip-
tion of discussed AI intervention, domain of AI used, 
data source(s) used for given AI tool, evaluation(s) of AI 
tool accuracy/efficacy, main results of study, identified 
barriers to clinical integration of described application, 
identified facilitators to clinical integration of described 
application, chronicity of pain discussed in article (acute 
versus chronic), and a category for additional pertinent 
information of interest. See Data S2 for an illustration of 
the data extraction form used.

2.4 | Risk of bias assessment, collating, 
summarizing and reporting results

Information in the data extraction form was collated 
and the findings and trends as they relate to AI in acute 
and chronic pain management were recorded and sum-
marized. The risk of bias of included publications was 
assessed depending on publication type using previ-
ously published risk assessment tools. The Template for 
Intervention Description and Replication tool (TIDieR) 
(Hoffmann et al., 2014) was used to asses risk of bias of 
included publications that describe interventions using 
AI, whereas the Prediction Model Study Risk of Bias 
Assessment Tool (PROBAST) was applied to studies de-
scribing AI prediction models (Wolff et  al.,  2019). Both 
of these previously published tools enable researchers to 
characterize the risk of bias of studies based upon speci-
fied categories of potential risk.

Random forest Subset of machine learning that produces multiple decision trees using a subsample of features to create each 
decision tree. The majority vote among trees is then used as the model's final class prediction Choi, Baker, et al., 2020.

Support vector 
machines

Subset of machine learning that classifies data by creating a decision boundary, known as the hyperplane, that is 
orientated as far as possible from the closest data points from each observed class of data (Noble, 2006).

Regression: linear, 
logistic, elastic net, 
lasso

An umbrella term for algorithms that characterize the strength of the relationship between a dependent variable 
and one or more explanatory variables (Biship, 2007).

K- means clustering Clustering method that classifies classify objects into a specified number of groups (k groups). Each group is 
centered around their mean, and the algorithm attempts to minimize the distance between each observation and 
their corresponding mean (Nedyalkova et al., 2021).

Hierarchical 
clustering analysis

Clustering method that begins by assuming that each data point is its own cluster. At each sequential step in data 
clustering, the most similar cluster pairs are combined according to the chosen similarity measure. This process is 
repeated until predetermined criteria are met (Akman et al., 2019).

T A B L E  1  (Continued)

 15322149, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ejp.4748 by C

ochrane France, W
iley O

nline L
ibrary on [11/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 5ANTEL et al.

3  |  RESULTS

3.1 | Study characteristics

The characteristics of the included studies are described 
in Table S1 and the results of the current literature search 
are shown in the PRISMA diagram (Figure 1). From the 
original search which included 17,601 references, 12,435 
articles were screened after duplicates were removed, and 
551 were selected for full- text review. This resulted in 197 
articles being included in this study. Studies included in 
this review were published between 1997 and 2023, with 
a significantly accelerating rate of publication in recent 
years (Figure 2). Included publications were from 17 dif-
ferent countries, with most from the United States (n = 86) 
and China (n = 25). See Figure  3 for an overview of the 
applications of AI described and Figure 4 for an overview 
of the types of AI employed. The risk of bias assessment of 
included studies is summarized in Figure 5. Most included 
articles were seen to have low risk of bias. However, the 
main methodological limitation observed across studies 

was poor reporting regarding the type of AI used, and a 
lack of rigorous evaluation of the described AI tool. For in-
stance, many studies simply state that AI was used within 
their intervention, but do not further elaborate regarding 
the specific branch of AI used (machine learning, NLP, 
computer vision, etc). Similarly, multiple studies describe 
an AI tool without evaluating the efficacy of this tool in ac-
tual clinical environments. For example, it was commonly 
noted that studies only evaluate the accuracy of a given 
tool (i.e. ability to accurately predict analgesic require-
ments) without studying how this prediction may affect 
patient outcomes (i.e. does this ultimately translate into 
improved pain management). Figure 6 describes common 
barriers to the implementation of such AI technologies for 
acute and chronic pain management.

3.2 | Acute pain prediction

The development of AI tools to aid in the management 
of acute pain is expanding. Using AI to predict patients 

F I G U R E  1  PRISMA flow diagram.
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who are likely to develop acute pain following a surgery 
or insult may allow clinicians to anticipate appropriate 
management plans to address this pain. Tools designed 
for this purpose were described in 22 articles found in 
the literature (Awadalla et  al.,  2022; Buus et  al.,  2022; 
Davoudi et al., 2022; Dolendo et al., 2022; Gao et al., 2021; 
Ghita et al., 2023; Guan et al., 2023; Hah et al., 2019; Han 
et al., 2021; Heravi et al., 2021; Lee, Wei, et al., 2021; Liu, 
Diao, et al., 2023; Lodhi et al., 2015; Morisson et al., 2023; 
Olling et  al.,  2018; O'Muircheartaigh et  al.,  2015; Sai 
et al., 2019; Tan et al., 2021; Teichmann et al., 2021; Tighe 
et al., 2012; Tighe et al., 2015; Zhang et al., 2023). For ex-
ample Buus et al. described the use of machine learning 
to identify patients likely to experience high levels of pain 

following knee arthroplasty to facilitate the initiation of 
increased analgesia regimens (Buus et al., 2022). Similarly 
Tan et al. used machine learning to predict parturients at 
high risk of experiencing breakthrough pain during labour 
epidural analgesia, allowing for increased personalization 
of analgesia management (Tan et al., 2021). While meth-
ods used to appraise the efficacy of these tools were very 
heterogeneous in the literature (and were absent in some 
cases), these applications tended to be accurate in predict-
ing acute pain in patients. However, data regarding how 
this accuracy translates into patient reported outcomes was 
limited. This is would be an important area of future work 
in order to allow the use of these acute pain predictions to 
ultimately inform the clinical management of pain.

F I G U R E  3  Overview of applications using artificial intelligence for pain management.

F I G U R E  2  Dates of publication of included articles.
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3.3 | Chronic pain prediction

AI has been used to predict patients likely to transition 
from acute to chronic pain. This may facilitate the appli-
cation of analgesia techniques intended to mitigate the 
risk of pain progression, as well as to plan for manage-
ment strategies following the potential onset of chronic 
pain. For exampleSun et al. described the use of machine 
learning to predict patients likely to develop chronic 
post- surgical pain following breast surgery to facilitate 
subsequent analgesia decisions (such as using regional 
techniques to potentially reduce the risk of chronic post- 
surgical pain) (Sun, Kang, et al., 2023). Furthermore, the 
use of AI has been used to help clinicians manage patients 
already experiencing chronic pain, often by predicting the 
onset of pain exacerbations, such as in patients with sickle 
cell disease (Vuong et al., 2023).

3.4 | Medication and dose response 
prediction

Predicting which patients may respond positively to a cer-
tain analgesic medication can improve the ability of cli-
nicians to choose the most effective analgesic agent. This 

was attempted by Ichesco et al. by using machine learn-
ing to predict which patients with fibromyalgia would re-
spond to pregabalin (Ichesco et al., 2021). Similarly Olesen 
et al. aimed to predict the efficacy of pregabalin in patients 
with pain due to chronic pancreatitis (Olesen et al., 2013). 
Furthermore, estimating the most effective dose of a cer-
tain analgesic agent according to patient characteristics 
may allow optimized pain control while minimizing un-
wanted side effects, and has also been attempted in the 
literature (Olesen et al., 2018).

3.5 | Treatment decision- aids

Deciding which patients may benefit from a given in-
terventional procedure to manage their pain, or a given 
pharmacological regimen, can be challenging. Using AI to 
predict a patient's response to a certain therapy may facili-
tate this decision. For instance, a neural network devel-
oped by Kim et al. was able to successfully predict which 
patients with chronic pain due to foraminal stenosis 
would benefit from transforaminal steroid injections (Kim 
et al., 2023). Beyond only predicting response to interven-
tions, the use of AI to explicitly guide the optimal treat-
ment plan for a patient with pain may further alleviate 

F I G U R E  4  Overview of commonly applied artificial intelligence technologies.
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the difficulty of treatment planning. This was attempted 
by Knab et al. by using an expert system to recommend a 
treatment regimen for patients with complex chronic pain 
(including pharmacologic, non- pharmacologic, and inter-
ventional modalities) (Knab et al., 2001). Despite detailed 
discussion of these interventions in the above studies, lit-
tle evidence exists as to the impact that these tools may 
have in actual clinical practice. While the ‘medical appro-
priateness’ of decisions recommended by the above tools 
were evaluated by selected experts in multiple studies, no 
patient care was actually directed by these suggested treat-
ments. As such, further research regarding the real- world 
application of these tools is needed.

3.6 | Opioid- associated risk prediction

While opioids remain a mainstay of pain management 
in both the acute and chronic phase, their multiple side 
effects and potential for dependence (and addiction) re-
quire careful attention. Predicting which patients with 
pain are at risk of long- term opioid use, and potential opi-
oid misuse, may facilitate the initiation of opioid- sparing 
techniques earlier. Similarly, identifying patients treated 
with opioids that are exhibiting signs of abuse may allow 

intervention to mitigate problematic behaviour. NLP was 
used for this purpose by Chatham et al. by using data from 
electronic health records to identify patients with pain 
who were experiencing problematic opioid use (Chatham 
et al., 2023). The use of AI to predict which patients are 
at high risk of long- term opioid use following initial pre-
scription has also been extensively described in the lit-
erature (Anderson et al., 2020). In particular, the use of 
machine learning and neural networks to classify patient- 
risk based upon patient characteristics, employed treat-
ment modalities and underlying pathology seems to hold 
particular promise (Gabriel et  al.,  2022, 2023; Vitzthum 
et al., 2020; Zhang et al., 2020).

3.7 | Advanced ultrasound guidance

The use of ultrasound has become routinely incorporated 
into pain management techniques within the practice of 
many clinicians. The ability to use ultrasound for real- 
time imaging during regional anaesthesia procedures has 
improved both the safety and efficacy of such approaches 
(Salinas & Hanson, 2014). The addition of AI to enhance 
the ability of clinicians to effectively use ultrasound 
when performing nerve blocks and injections holds the 

F I G U R E  5  Risk of bias assessment of included studies using PROBAST (Wolff et al., 2019) Checklist for reporting of prediction models 
(L, low risk of bias; H, high risk of bias; U, Unclear risk of bias) and TIDieR (Hoffmann et al., 2014) Checklist for reporting of interventions 
(L, low risk of bias; H, high risk of bias; N/A, Not applicable).
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potential to further improve these methods. Potential ben-
efits may include improved regional anaesthesia success 
rates, decreased injury to surrounding vascular and neu-
ral structures, as well as lowered risk of local anaesthetic 
systematic toxicity. For instance Bowness et al. used ma-
chine learning to identify anatomical structures on ultra-
sound by producing colourful overlays on the generated 
ultrasound image (Bowness et al., 2023). This not only re-
portedly improved the rates of block failure but was also 
judged to reduce the risk of unwanted needle trauma to 
surrounding anatomical structures (Bowness et al., 2023). 
Similar to other applications of AI for pain management, 
the evaluation of the use of AI for advanced ultrasound 
guidance has not been extensively performed in the clini-
cal environment.

3.8 | Real- time treatment tailoring

Following the initiation of a treatment regimen for a 
patient's pain, the ability to successfully follow and 

continuously tailor this regimen may allow for improved 
outcomes. For example, Salgado Garcia et  al. described 
the use of machine learning algorithms in combination 
with wearable sensors to detect and monitor the self- 
administration of opioids after dental surgery (Salgado 
Garcia et  al.,  2022). Elsewhere Shieh et  al. used fuzzy 
logic to enhance patient- controlled analgesia for patients 
undergoing extracorporeal shock wave lithotripsy by 
adapting to patients' pattern of medication use (Shieh, 
Dai, et al., 2007) used case- based reasoning to adapt phys-
ical therapy programs for patients with lower back pain 
based upon patient characteristics and biomechanical 
measurements (Recio- García et  al.,  2021). Alternatively 
Coleman et  al. used NLP to collect care quality indica-
tors of patients receiving treatment for pain (Coleman 
et al., 2023). In total, 16 identified articles focused on the 
use of AI for treatment tailoring (Alzouhayli et al., 2023; 
Bates et al., 2023; Cañada- Soriano et al., 2023; Coleman 
et  al.,  2023; Fundoiano- Hershcovitz et  al.,  2023; Kim 
et al., 2023; Liu, Li, et al., 2023; North et al., 1997; Ortiz- 
Catalan et  al.,  2016; Recio- García et  al.,  2021; Salgado 

F I G U R E  5   (Continued)
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Garcia et  al.,  2022; Shieh et  al.,  2002; Shieh, Chang, 
et al., 2007; Wang, Liu, et al., 2023; Yang et al., 2013).

3.9 | Self- management applications

As patients transition from experiencing acute pain to 
chronic pain, the importance of empowering patients 
to self- manage their pain in conjunction with physician 
oversight has often been emphasized. With the wide-
spread uptake of mobile computing, smartphones and 
intelligent wearable devices (such as smart watches), the 

development of electronic applications to facilitate the 
self- management of pain have quickly expanded. The in-
corporation of AI into these tools is now being explored as 
well. Self- management tools using AI take many forms, 
including applications intended to engage patients in 
cognitive behavioural therapy for chronic pain at home 
through chatbots (Piette et al., 2022), to suggest tailored 
at- home exercise therapy to alleviate chronic musculo-
skeletal pain (Nordstoga et  al.,  2023), and to guide ap-
propriate analgesic medication administration following 
hospital discharge (Piette et al., 2023). Overall, these ap-
plications tended to be well- received by users, who often 

F I G U R E  5   (Continued)

F I G U R E  6  Current barriers to the 
implementation of AI technologies for 
pain Management.
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reported high usability and satisfaction. However, robust 
data regarding their effect on pain management outcomes 
is often limited and remains an opportunity for future 
research.

4  |  DISCUSSION

The great potential of AI to improve pain management 
is becoming increasingly apparent. Improving provider 
awareness and understanding of AI, and its potential 
application to manage pain, is important as we move 
towards the potential implementation of such tools into 
clinical practice. To address this, our systematic review 
aims to provide a basic overview of AI and describe ap-
plications incorporating AI for use within pain manage-
ment. By allowing earlier predictions regarding the pain 
management needs of our patients, tailoring treatment 
plans for individual patients, and empowering patients to 
self- manage their pain, AI may ultimately improve patient 
outcomes.

While diverse uses of AI for pain management are 
appearing at a rapidly growing rate, our experience with 
the actual implantation of such tools in clinical practice 
remains sparse. Barriers to the routine clinic implemen-
tation of these tools exist, including a lack of validation 
in diverse patient populations and the relatively small 
sample sizes used in current studies. Practically speak-
ing, the lack of infrastructure to support these advanced 
systems, the currently limited provider understanding of 
these tools and difficult user interfaces that do not easily 
integrate into already existing healthcare technology set-
ups further hinder the current use of AI for pain manage-
ment in the clinical domain. Despite promise regarding 
the efficacy of these tools in carefully designed studies, the 
evidence regarding the practical implications of these ap-
proaches is still largely lacking. The inconsistency among 
the evaluation of such tools makes appraising the clinical 
efficacy of these AI applications difficult, especially when 
considering that the validity of these tools often depends 

upon the quality of data they are fed. As such, there is a 
need for new methods to assess newly developed AI tools 
within the clinical milieu. While it is necessary to study the 
ability of a given tool to accomplish its intended goal (i.e. 
ability to predict acute pain in the post- operative setting), 
these tools must ultimately be evaluated by their ability to 
have a clinically meaningful impact (i.e. ability to affect 
patient pain outcomes). From a practical perspective, the 
need to implement these systems while upholding ethical 
patient data sharing standards and adequate data secu-
rity is essential and will require further work. However, 
addressing such concerns will be a challenge, especially 
given the novelty of such technologies. A recent review by 
Polevikov provides an in- depth discussion of these issues 
and outlines current best practices for the implementation 
of AI in healthcare (Polevikov, 2023).

Regardless of these barriers, we believe that the future 
of AI integration into pain medicine extends far beyond in-
terventions merely meant to guide the treatment of pain. 
Ultimately, treating pain is one step within the patient- care 
continuum that may benefit from the use of intelligent 
computing systems. The true power of AI lies in envision-
ing a comprehensive system in which AI is used to optimize 
patient care at every interaction with clinicians. By embrac-
ing this wide- reaching approach, we can truly benefit from 
the potential of AI to continuously learn, adapt and evolve 
based upon the vast data collections that can be created 
throughout the evolution of a patient's care. For instance, 
the use of AI has already been described in the literature for 
pain diagnostics (D'Antoni et al., 2022), objective pain as-
sessment (Cascella, Schiavo, et al., 2023), resource manage-
ment (Bellini et al., 2024) and research initiatives (Lötsch 
et  al.,  2022). A brief potential framework incorporating 
these applications of AI into a patient's care is presented 
in Figure 7. By combining these distinct applications of AI 
into a cohesive structure, the integrated intelligent systems 
have the potential to truly learn from and feed into each 
stage of a patient's management. For example, allowing the 
knowledge generated from a diagnostic AI- based tool to 
contribute data to an automated pain- intensity assessment 

F I G U R E  7  Framework of potential artificial intelligence ecosystem for pain medicine.
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AI- application holds the potential to improve the latter's 
accuracy. Similarly, informing tools for prognostication, 
treatment planning and self- management from knowl-
edge generated from both diagnostic and assessment tools 
may further improve the proposed personalized patient 
management. Ultimately, using the culmination of these 
tools to populate data collections for research and facilitate 
patient- care resource allocation (clinic time management, 
operating room scheduling, medication and supplies man-
agement, etc.) would enable continuous improvement of 
these very systems. Of course, this level of integration has 
not yet been attempted in clinical practice and its true fea-
sibility remains a topic of future study. The development of 
such a system may optimize the efficiency of pain recogni-
tion, workup and diagnosis, increasingly tailor treatment 
plans to individual patients, and contribute to the advance-
ment of scientific discoveries for the treatment of pain. For 
these systems to reach their full potential though, future 
efforts needs to be placed upon collecting, storing, clean-
ing and sharing accurate data collections between groups, 
institutions and organizations (Dash et al., 2019). This will 
require strong commitment, raised awareness, funding and 
widespread infrastructure development to make it a reality.

While our review adheres to previously published 
methodological frameworks for systematic reviews (Page 
et al., 2021), this study is not without limitations. For in-
stance, the very large heterogenous collection of literature 
identified limited our ability to investigate each application 
of AI in detail, instead focusing on identifying and summa-
rizing trends in the literature. Similarly, the heterogeneity 
of the described applications limited our ability to compare 
the accuracy/efficacy of discussed AI tools as many were 
evaluated using distinct metrics. Finally, the scope of this 
review was limited due to the English and French language 
restriction. Future research including a broader range of 
languages and employing advanced data harmonization 
techniques may help overcome these limitations.

5  |  CONCLUSION

The integration of AI into pain management carries great 
potential to improve patient care. As this technology be-
comes increasingly studied, and eventually used routinely 
in clinical practice, a basic clinician understanding of such 
technologies will become increasingly important. Despite 
the recent advances regarding these intelligent systems, it 
is important to acknowledge the challenges that continue 
to impede its incorporation into clinical practice. It is also 
vital to recognize that the use of AI for pain management 
is only one facet of a broader landscape, and continued ef-
forts should be directed towards establishing comprehen-
sive systems that seamlessly integrate AI throughout the 

entire patient care continuum. The future of these systems 
holds immense potential, although bringing this vision to 
reality will require continued collaboration from health-
care professionals, researchers and patients alike.
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